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1.    INTKODI'CTION 

This fourth Quarterly Technical Summaiv Riport descril)cs iho progress madr in the period 

1  February through 30 April     During this period MPI) simulation runs and cesium runs 

wen- made. 

A considerable amount of data was collected     It was possible to plot a I-V characteristic 

if the generator directly with an x-y plotter; this is the first direct 1-V curve ever taken 

from a closed loop MPI) power generator     Kvi-n if we are not sure thai we understand all 

data obtained,  we feel that the results are encouraging and a moderate optimism toward 

the success of closed loop MPI) power gem-ration is reasonable 
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II.    KKSUMK ()[•' PKOGRKSS 

CONSTKUCTION OF CLOSED LOOP DEVICE 

Thi' necessary changes resulting from the experience of the cesium runs previously reported 

were made during this report period.    The cesium injection system was rebuilt so that the 

cesium flow can be observed and measured through a sight glass. 

The cesium-separation system was also improved. 

TEST RUNS 

A large number of MHD-simulation test runs were made.   To do this, the necessary con- 

ductivity was created by a high voltage,  high frequency discharge with a powerinput less 

than one watt.    The so-created conductivity was one mho/m,  at about 60ÜoK,  using helium 

as working fluid without any seed.    Some valuable information was obtained, especially 

on the influence of external heating of the electrodes on the power output 

Several cesium runs we;-e made at 1400 and at 1700^.    The system operated at these 

temperatures for several hours without any damage.    The data obtained were consistent 

and reproducible.    They are discussed in detail in Section III     Runs at higher temperatures 

an- planned for the near future. 

THEORKTICAL INVESTIGATIONS 

lom/ation in Nonisotlu rmal I'luriniiis 

lunizatiun equations were d 'rived for two-temperature plasmas, when the distribution of 

the intrinsic atomic states is determined by electron collisions and atomic particle col- 

lisions,  respectively     The approximations involved in applying the Saha equation to non- 

equilibrium plasmas are discussed in Section V. 

Preliminary investigations have been started toward a theory describing the ionization 

in plasmas with strong electric fields varying with time. 
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NoneouUibrium ProceMM 

A theorv describing the establishment of the nonequllibrium in a reacting plasma flow 

with transverse magnetic field was developed.    It is concerned,  in particular, w.th the 

reactive relaxation, the buildup of the nonequilibnum between the mean mass velocities 

of the components, and the intercomponent thermal nonequ.Ubrium.   The importance 

relative to the present MPD converter experiment is discussed in Section IV. 



III.    TKST RESULTS 

MPD SIMULATION 

The investigations reported in this section were originally initiated to get preliminary in- 

f..imation on auxiliary iomzation.    Because this kind of ionization turned out to be a very 

convenient way to simulate the condition of Cs seeded He plasma,  the setup was used 

mainly for this purpose. 

It is very difficult to run a cesium-seeded system at high temperatures for extended time 

periods; therefore, the MPD simulation system was used to check the instrumentation. 
This simulation system provided a conducting helium gas at moderate temperatures without 

using cesium seeding. 

The electrode setup which was used is shown in Figure I.    One plate electrode and one pin 

electrode, similar to those shown in Figure 7 of EDR 3743 (Third Quarterly Technical 
Summary Report) were used.    The plate was grounded.    A pulsed d-c voltage (22 kv.   18 kc) 

with a power input less than one watt, was applied to the pins of the first row.   This created 

a visible spark between the first pin and the plate electrode.    Also,  when the helium gas is 
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Figure 1.   MPD power simulation setup. 
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flowing,  a feeble glow fills the entix-e interelectrode space.    Under these conditions,  the 

conductivity is of the order of one mho/m at 6QQ°K. which is the same order of magnitude 

as the conductivity which can be expected from thermal iomzation at ISOO'K when ITo 

cesium seeding is used. 

The MPD-simulation system can be run for days without damaging the electrode or de- 

vitnfying the windows,  thus allowing complete checkout of all conductivity, spectroscopic, 

and other instrumentation. 

A power output can be drawn from the pins downstream when the magnetic field is applied. 

Generated voltage at 1000-ohm load is plotted vs velocity in Figure 2.    Figure 3 shows the 
generated voltage measured on one pin. using a 1000-ohm load resistance.    The generated 

voltage seems to be proportional to the magnetic field.    The velocity has a greater influence 

on generated voltage than the first power of velocity as shown in Figure 2. 
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In addition to its usefulness during instrumentation checkout, the MPD-simulation system 

also provides information relative to the problems associate.! with MPD power generation. 

A typical voltage recording is shown in Figure 4.   As soon as the h.gh voltage discharge 

is established, a small output voltage can be 

measured.    This is called the "intrinsic" out- 

put.    When applying the magnetic field In the 

positive direction (to augment the intrinsic 

output),  power outputs,  as shown in Figures 

2 and 3.  are obtained.    When the magnetic- 

field is reversed, the best result which can 

be achieved is the reduction of the intrinsic 

output voltage to zero.    A negative output 

voltage was not observed in this case. 

One possible explanation of the aforemen- 

tioned behavior is as follows.    Referring to 

Figure 3.  the gas flow blows electrons down- 

stream from the spark.    By diffusion, some 

of these electrons arrive at the collection 

pin; many more arrive at the base plate. 

The latter flow back to the- cathode spot in a 

short loop.    Tin- electrons at the collection 

pin, once captured by the pin. cannot escape 

because of the IUKII work function of the pin 

material.    These return to the base plate 

by flowing through the external circuit.    This 

flow constitutes the "intrinsic" output of the 

clevu i . 

When a magnetic field is applied which urges 

the electrons flowing with the gas stream to 

move upward and toward the pins,  the output 

power is augmented.    When the field is re- 

versed,  the electrons are urged downward and 

LlO.OOO'gauss^ 

! 
•8000 gauss 

r-t-r  
Intrinsic 

-j — 

zero voltage 

• 
Output 

3     2     10     12     3 

Generated voltage—volts 

Figure 4.   Typical voltage recording. 
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away from the pins.   Thus, the few electrons which would have arrived by diffusion at the 

collection pin an- instead driven away and toward the plate.   The output current is reduced 

to zero because the relatively small induced tUctnc field cannot, of course, cause 

electrons in the pin u. ..ve.vome the work function and escape.    Consequently,  no reverse 

current develops and the voltage curves of Figures 2 and 3 drop to zero but go no further. 

Figure 5 makes it even more clear that electrons are emitted from the plate into the gas 

stream.    Figure 5 shows the traces of the cathode sinjt of the auxiliary discharge after 

several hours of running time.   The discharge is located on the left side of the picture near 

the two strong spots.    In the time between two pulses the cathode- spot is blown downstream, 

as indicated by the traces. 

Figure 5. Traces of cathode spot on base plate. 



To check the explanation given for the fact that no crossing of the zero line could be ob- 

served when reversing the magnetic field,  arrangements were made to heat the pins. 

Wh.n heated to a sufficient high temperature, the pin should be able to emu enough electrons 

to show a reversed current.    Figure C shows the result of such a run with the pin heated 

to ISOlTK.    The field strength of 13.0U0 gauss makes the output voltage slightly negative. 

When heating up to a higher temperature (1620'K) this effect is more pronounced.    A 

tvpical recording of a run with pins at 1620^ is shown in Figure 7. 

The emitting area of a pm is very small (diameter less than one mm).   Therefore, it 

seemed worthwhile to find out how a substantial increase of the emitting area (1:500) 

would affect the output voltage in the negative direction (output voltage is adverse to in- 

trinsic voltage). 
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Figure 7.   Recordings of voltage 

output with pins heated to 1620 K- 
1000-ohm load resistor. 

Magnet 
current 
(amp) 

3    2     10     12    3 

Generated voltage—volts 

The pins in Figure 1 were replaced by a plate su that two plate electrodes were in the 

system.    In addition to the plate one pin was used which served as anode for the high vol- 

tage discharge.    This plate was heated by the working fluid up to 1250^.    The results 

of such a run is shown in Ki«u. c 8.    The zero line was crossed when the magnetic field 

was such that output voltage and intrinsic voltage were adverse to each other. 

Other valuable information on the behavior of the MPD test section can be derived from 

recordings of the type shown in Ki^ure 9. 

The setup used to obtain data shown in Figure 9 consists of a ground plate and a set of pins 

as shown in Figure 1.    Recordings of the output of one pin are shown tor four different gas 

temperatures (601). 850,   1000, and HOOTO.   One fact, derived from Figure 9 is very 

significant - both output voltage and intrinsic voltage decrease with increasing tempera- 

tu re. 

U) 
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Figure 8.   Recording of voltage output with plate electrodes heated by the gas to 
1250 K— 5000-ohm load resistor. 
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The explanation is that the ceramic block which supports thr pins becomes a conductor ami 

forms a lead to ground for the output voltage as well as for the intrinsic voltage     For the 

sake of demonstration, the pin nearest to the metal structure which is connected to ground 

was chosen.    The resistance of the ceramic has to be considered parallel to the external 

load resistance, which was 1000 ohms.   That means the conductivity of the ceramic is 

quite considerable, and one must be cognizant of this fact when designing a MPD power 

generator. 

In the present setup, only a minor change of design was necessary to account for this con- 

ductivity of the ceramic.   The ceramic block was mounted differently, so that it is no 

longer in contact with the gas stream.    Pins or plates used as electrodes had to be longer. 

The present load due to conductivity of the ceramic is 20, 000 ohms.   This is satisfactory 

for most of the measurements.    Still the measurement of the open circuit voltage is not 

[«issilih . 

CESIUM RUNS 

Cesium runs were made at two different temperature levels,   1400 and 1720'K.    Based on 

the experience with the MHO-simulation system, three types of electrode configuration 

were prepared for the runs: 

• One pair of plates 
• Segmented electrodes with five segments each 

• Pin arrangement as described previously 

At the present time, the runs with plate electrodes can be regarded as completed for the 

temperature levels of 1400 and 1720^.    It is anticipated that one more run with plate 

electrodes at 2000oK will be made at a later time.    However,  the main interest for closed 

loop MHD generator is definitely at a temperature level of about 15ü0°K.    Therefore,  it 

is desirable to make more runs first with segmented electrodes and pin electrodes at 

temperatures between 1400 and 17ÜÜ°K.    At the present time the system is being equipped 

with segmented electrodes.    Minor -hanges in the support design of the electrode were 

made to account for the high conductivity of the ceramic material at these temperatures. 

The runs were made with a static pressure around 1.3 atmosphere in the test section.    It 

is obvious thai one could get better conductivities at much lower pressures for this small 

power output.    However,   it is believed the information on MHD power generation at 

12 
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atmospheric prt'ssurc and higher is much more valuable from a power density standpoint. 

Therefore,  runs at lower pressure level will be delayed until the present tests are 

finished. 

Typical results from cesium runs with plate electrodes are discussed in the following para- 

graphs; no attempt has been made to explain these data at this time. An explanation will be 

presented when more data become available. 

RUNS WITH VARIABLE MAGNKTIC FIELDS 

Figure 10 shows a typical output for a cesium run at 1400oK on a load resistor of 100 ohms 

using a seeding ratio of 2%.    The time scale is 30 sec/in.    After establishing the cesium 

flow,  the magnetic field was switched on and current manually increased to the desired 

level, where it was held for a few seconds and brought back down slowly.    Therefore, the 

shape of the recorded output curve is arbitrary as far as the slope of the curves is con- 

cerned.    The motor generator for the magnet is wired in such a way that it is possible, 

when decreasing the magnetic field, to go to slightly negative voltages and thus reverse 

the field slightly.    The effect of this can be seen on the recording.  Figure 10, where small 

peaks in the negative direction appear.    The recording also shows an intrinsic voltage of 

0. 1 volt.    There was,  of course,  no high voltage discharge used for these runs; the in- 

trinsic voltage is,  in this case, a pick up from the heater due to the conductivity of the gas. 

This was observed before and reported in the third quarterly report. 

Figure 11 represents a plot of output voltage versus magnet.c field for the same run.    A 

proportional increase of the voltage with the magnetic field can only be expected for small 

load factors, however,  the observed saturation should not appear — at least not at such 

low magnetic fields.    As indicated before,  no attempt will be made to explain this until 

additional data has been obtained. 

RUNS WITH VARIABLE LOAD RESISTOR 

Figure 12 shows a run at 14UU0K and 8000 gauss magnetic field where the load resistance 

was varied.    This was one of the first runs and was not a very good one; the results of this 

run are shown only to indicate the fluctuation in output which were caused by fluctuations in 

cesium flow.    The output follows instantaneously the fluctuations in the cesium flow which 

should make it feasible to generate a-c current by pulsed injection.    More runs are 

scheduled at a later time to measure the relaxation times for pulsed injection. 

15 
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Figure 10.   Cesium run with different 
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InlrlMlr vullacr 

Figure 13 id ;.ii l-V curve derived from data of a run at UuO'K.   lO.uoo gauss.   The num- 

erical values used ar.   listed in Table 1.    The power output versus load for the samt- run 

is shown in Figure H.    After the seeding technique was improved, it became possible to 

plot l-V curves direcll> \wtli an x-\ plotter .vl» n running tin- experiment. 

Table I 

Data from a Typical Run (IT« Seeding,   IQ.UOO-gauss Magnolie Ku-ld) 

Power 
Voltage 
(voltf 

Current 
(mtlliamp) 

Load Resia 
(uhm) 

tor 
(x lo4 watt) 

il. 18 :j.G jü 6. 5 

0.24 2.4 100 5. 7 

0.35 1. 75 2(IU Ü. 1 

0.47 0.04 500 4.4 

0, 54 0. 54 1(1(10 2. 9 

0.64 0.32 2000 2. 0 

(1.68 0. 136 5000 0. 92 

il, 
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Figure 11.   Voltage output of run shown in Figure 
10 versus applied magnetic- field. 
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Figure 12.   Cesium run with constant magnetic field 
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Figure 13.   I-V curve of generator for 1400 K gas temperature. 
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Two of the I-V curves obtained are sho"n in Figure 15.    All plots were straight lines with 

superimposed fluctuations.    These results seem to be in disagreement with Figure 13 

which shows an 1-V curve which is not a straight line.    The difference between   the runs of 

Figure 13 and Figure 15 is that they are made at different temperatures.    The run of 

Figure 13 was made at 14UÜ0K while the run of Figure 15 was made at n20°K. 

The difference between the two curves in Figure 15 is caused by different cesium mass 

flows.    (l"i) and 2"'i, seeding ratio). 

Another type of information is given in Figure 16.    Curve I with the large fluctuation was 

taken at an extremely low cesium mass flow,   while curve 11 with the small fluctuations 

was taken with an extremely high cesium mass flow.    Curves I and II were taken with the 

same magnetic field; however,  the direction was reversed between curve I and 11. 

19 
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As an aid in under8tanding tins,  Figure 17 gives the expected conductivity for different 

seeding ratios.    A small change in the cesium mass flow will cause a large change in 

power output when the seeding ratio is   <  1 -. (steep part of the curve in Figure 17) while 

it will cause only small fluctuation when the seeding ratio is   >  1% (flat part of the curve 

in Figure 17). 
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IV.    THEORKTICAL INVESTIGATIONS 

lonuation h\ NQIUSI'IU rrnal Plasma 

In general, it is assumed that an elevated electron temperature considerably increases 

the degree of ionization in plasma.    To investigate the effect of nonisothermic conditions 

on ionization, assume that approximate local statistical equilibrium is established in the 

center of mass svstem of the single plasma components.    From the condition of minimum 
1* 

entropy production    , it results for the stationary ionization state: 

4-t        T 
(l) 

The  terms on the left side of Equation (1) are associated with the chemical entropy pro- 

duction, the   terms on the right side with the thermal entropy production in the plasma. 

According to the reaction equation. 

a ^   i + e (2) 

the stoichiometric coefficients are:   re « 1. »j » I.  »g • -1.     For negligible interaction 

energy compared to the total energy of the particles in the single components, the chem- 

ical potentials can be derived in the semiclassical approximation as: 

=   - kT. 

kTr 
and 

(3) 

(4) 

»Superscripts denotf references listed in Section VI 

2:i 



kTr 
|ln 1^;^ 3/2 -1 ♦ In V (5) 

Note that the individual temperature of the components enters in the translational part of 

the potentials.   The temperatures of the heavy particles. Tj and Ta. have been set equal 

to a mean gas temperature. T0.    Ue = 2 designates the partition function of the electron 

spin states.   The absolute partition function. Ug . of the atoms and ions,  respectively,  is 

related to the excitational partition function. u8, by (s • i. a)- 

e-48/kTus(T,.   u.(T).   E   «s" 
a =0 

■•>T 
*«2 (6) 

where is is the energy of the particle in ground state («^   ■ excitation energy, g £   = 

statistical weight of the a-th state).   Obviously. T must be identified with the electron 

temperature. Te. or the gas temperature. T0. according to the spectrum of the intrinsic- 

states of the atomic particles is determined by electron collisions or atomic particle 

collisions. 

By inserting Kquations (3) through (5) into Kquation (1).  a relation is readily obtained 

giving the ionizational composition of the plasma.    The results are in the cases: 

•  Distribution of states according to the electron temperature 

(2 »r m(. k Tc\ 

h2   ; 

3/2 "iCV        - (ti - ta)/k Te     +Les/ kTu 

"r, <V 
(7) 

Distribution of states according to the gas temperature 

/2«mekTe\ 
3/: 

"i 'TQ)    e-
1 

u:i (T0) 

ti-ia)/kT0       ^9BI kT« 
(8) 
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,„ thermodynamlc equilibrium.ps/lcT8 - 0    andTe = T0. Equations (7 and 8) become 

identical with the Egßcrt-Saha Equation. 

It is recognized that the lonizat.onal composition in a nomsothermal plasma deviates con- 
Biderably from that in an isothermal plasma when the distribution of the absolute intrinsic 

particle states is determined by the electron temperature. Equation (7). Under conditions 

of applicability of Equation <8). i.e. . at low electron densities, the nonisothernua affects 
the lomzation relatively ln.ignific.ntly. It is also noticeable that he thermal nonequUi- 

br.um processes enter exponentially, indicating clearly that neglecting them is adm.ttable 

only at slight nonequilibnum. 

in this presentation, the thermal nonequilibnum processes are considered only formally 

via the expressionE 98/kT8.   For idealized models of nonequil.bnum plasmas, these 
thermal nonequilibnum effects on the ion.zat.on have been calculated explicitely and will 

bo published soon. 
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Build-up Of Nonequilibnum 

In A 
Keactine Plasma Flow With Transverse Magnetic Field 

The expansion of a plasma into a region with exterior forcefields is accompanied by both 
microscopic and macroscopic nonequilibrium processes.    These concern the transformation 

and redistribution of the velocity distributions in the components and the establishment of 

intercomponent nonequilibrium.  respectively.    The latter is the subject of the present 
investigation.    The selected theoretical model assumes a slightly ionized plasma flowing 
into a channel with a transverse magnetic force field and segmented electrodes connected 

by a Faraday load.   The plasma consists of the products of a reacting seeding gas —later 

referred to by the indices (a) for neutrals, (i) for ions, and (e) for electrons-and a non- 

reacting driving gas (o).    In particular, attention is given to the buildup of the intercom- 
ponent thermal nonequilibrium.    The investigations are based on the multicomponent field 

equations of reacting plasmas which were derived from the kinetic equations in the Third 

Quarterly Report. 

REACTIVE RELAXATION 

Comparison of the various inelastic collision processes in seeded plasmas at low tempera- 
lures shows that the dominant reaction mechanisms are electron collision ionization and 
three-body electron-ion-electron recombination.    As confined to these types of reactions, 

the reaction equation is: 

e + a S   i + e + e 
(M| 

With r+  as ioniz ation reaction velocity,  and F"   as recombination reaction velocity, the 

eactivc mass production in the s-componcnt becomes: 

[I reactive «p. ,   -i 

(r. />)" 

reactive 

(r, P) 
d va >  r. m. (r+ - r") (10) 
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or the electron component s - e:   <r. P) = (a. -). (i. e); and appropriately for the remaining 
amponents.   The symbol ^ (s - c. i. a. o) designates the stoichiometnc coefficients of the 

K 
component 
reaction.  Equation (9). as follows 

•^   =   ■'• 2 -I   •  +1, »!  •  +1. »a  ■   -1. "o • 0' (ID 

The total reaction velocity, r . is given in terms of the (electron collision) lomzation 
probability coefficient.2 Sea. and the (three-body electron-ion-electron) recombination 

probability coefficient.2  Reie, by 

n 
r = r *   - r "   =   ne na Sea - nj nc Rcip; Sea ■ Sea (Te)    Reie • Reie (Te) (12) 

Under the assumption that the statistical distribution of the internal atomic and ionic- 
states is determined by the electron temperature, the reaction probability coefficients 

thus defined are functions of the electron temperature alone. 

Equation (10) together with Equations (11-12), describes the reactive relaxation phenomena 

in the componenta.    The substantial derivative is defined by 

(M =   lr +^  -   '        > 

It follows-in orders of magnitude-for the characteristic length,   in direction of the 

channel axis,  after which: 

• Tin' density of the charged particles is changed by a factor e*'   [sign according to the 

sign «if:   i»     i (na .Sca - nL. nl Reie>]' 

v., s 
jrcactive    = ,    ,   8»e, i (14) 
s na Sea - "e ni Reic 
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• The atom density is changed by a factor e        sign according to the sign of 

n   n   R     )1 
e   i    eie I i>   (n   S 

a     a   ea 

reactive /na\ ^»a 

\ ne /    (na S^-n^ ni Reie) 
(15) 

In particular, the characteristic lengths for the single processes are: 

1 
ionization 

na sea 
. s » e.i (16) 

,recombination   .       v"8 s « e i 
s ne n, Reie 

(17) 

ionization 
neJ  na S .M 

(18) 

recombination 
\'\)   ne ni Rcio 

(1!)) 

The v      .k-signate the moan mass velocit> of the- components (s) parallel to the channel 
""     "S B . .reactive.  _ 
axis.    From Kquation (14),  it may bo soon that in reaction equilibrium.   1 e_ i 

This means that the density of the charged particles changes remarkably within a finite 

length only in the case of strong reaction nonequilibrium. 
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TRANSVERSE ELECTRON DRIFT 

As an experimental arrangement, consider a plasma flowing into a channel with an active 

gection containing a transverse magneUc field and segmented electrodes.    The electrodes 

are connected by a Faraday load lij.  . their spacing in the transverse direction l> de«- 

jgnated by Lj_   . 

In the magnetoactive section of this channel, an intercomponent velocity nonequlllbrlum 
which is primarily determined by the electromagnetic forces and intercomponent friction 

forces is built up.   According to the equations of momentum conservation,    this process 

between two arbitrary components (s) and (r) is described by 

v% -   vr    V %   - 

- vr)- 
V^ "s Qrs 
Z^     mr 
s ^ r {\ E!lLS7VMsrkTsr("s <' 

•s >< Trs (^r " "s> 

,1s.   (g + ?vS-^i-V^-(?^rXS   ^). 
ms    \ s is^s/      mr  \ nrer/ 

(20) 

According to the applying law of collisional interaction. Q^ designates the Ramsauer or 

Gvosdover3 cross section.    The reduced mass and tempt-rature are defined by 

m« mr I     • r I ,„,. 

I„ the further analyse, the magnetic field of the plasma current^is^onsidered to be 

small compared to the exterior transverse magnetic field.    Bo(B~Bo)    , -".l velocity 

gradients perpendicular to the channel are neglected. 

For the considered arrangement,  no net Hall-effect exists in the plasma. _ At relatively 

small magnetic fields.   <ue  Te   X <u1  ^ « I (<*8 • |e8 | B/ms,   
T
s     ■ Z, rsr ). 
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also, ion slip is negligible. In the direction parallel to the channel axis, accordingly, the 

electron and ion velocity can be taken as equal to the gas velocity: v,e i ' vlia. v,l0 (mean 

downstream mass velocity). 

A velocity nonequilibriun. .s built up in the transverse direction, where under the g.ven 
conditions      ^«v^      For the latter reason, only the bmldup of the transverse electron 

drift will be mveshgateU in detnil.    According to Equation (20). th.s process U descr.bed 

by (^,e is replaced byv^): 

a^Le   ^     leel ^x+^o XB0* 

8^    2   2L^|C^TW 

VPieX 
ne|ee|/ 

Hoc k T ot K  ' oe 

r=o.a.i 

'j.e' (22) 

rie iue 

Neglecting terms relatively small of order me/mr f e. "^^ . and the x-dependence 

of coefficients varying relatively insignificantly in Equation (22). the solution .s m first 

approximation: 

lee|   /^ -. vp^\ LL.   [ -x/1 1 
^e>x = ^e>x-0e-x/1-L--^7^x+v„oxBo.  -^^-j^    |_1 - e        xj. (23) 

there the reciprocal characteristic relaxation length of the process. 

3 T   -me      r'ti.i 
(24) 

The finite nonequilibrium state is obtained as the limit x--  of Equation (23): 

^le>. 

(25) 
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The electric field.    Ei   .  i« impressed by the transverse load Rj^ , of voltage drop.  Uj^ , 

F.^    = - Uj. /L|   . 

From Equation (23). which describes,  in rough approximation,  the considered process, 

the following conclusions are reached: 

• An arbitrary initial nonequilibrium.  < ^    ) . would be removed with a relaxation 

length.   Ij^  .  by intcrcomponent friction forces 

• In the magnetoactive section of the channel, a nonequilibrium.   vj^O .  is built up 

which is proportional to the effective field Ei    + ^     X B0 +ISL£_ acting on the 
* "0 "el eel 

electron component, and shows the x-dependence of a frictional relaxation process 

of characteristic length 1^.    Practically, after a few relaxation lengths.  lj_, a finite 

nonequilibrium state is reached (formally designated by a subscript»). 

A more sophisticated theory of the build up of the electron drift must be based on a 

microscopic approach. 

INTKU-OMfONKNT THKKMAL NONKQU1UBHIUM 

The thermal equilibrium between the electron component and the neutral and ionic com- 

ponents is strongly disturbed,  as the energy exchange in elastic collisions between electrons 

and the heavy atomic particles is small.    The energy which the electrons acquire in the 

effective induced electric field of the plasma is.  therefore, primarily distributed among 
the electrons proper,  resulting in an elevated electron temperature (election heating). 
In the temperature region, where radiation losses are unimportant, the effect is limited 

by nonradiative,  reactive collisions. 

In the considered reaction mechanisms,  the ionization energy is taken primarily from the 

electron component, the recombination energy is fed primarily into the electron component. 

Furthermore,  with every transformed 8-partlcle,  the energy  ^ ^k T^ is liberated in the 
mean.    Consequently,  the reactive variation of energy.  AE .  of the s-particles is: 

AEf 

s 

'   I.   T >rr .     .   ..     It»  T. AIT      =     0 <26' [.n.|kTP].   AE,   ■   -.ilkTj.   AEa   ■   -va|kTa<   AEo5   0. 

:i2 



According to the definition of reaction velocities,  it follows for the reactive energy pro- 

duction in the s-component: 

[i^]—. zßm reactive 

(r.P) 
dv8   =   -    AE8<r+ -r'>- (27) 

The equation, which describes the buildup of the thermal nonequilibnum between the com- 

ponents (s) and (r) follows from the energy conservation equations   of these components. 

Considering the reactive energy production and the power of the intercomponent friction 

forces as the main energy sources, and the intercomponent convective energy exchange 

(proportional to the temperature difference between the components) as the main inter- 

component energy distribution mechanism, the result is («8r ■ Kronecker symbol): 

|k[?...Ts-?r.rTr],.   ..[..^.^](f. r") 

■aVl 
P-l   -   n        ..    3/2 _      V^n   CD      u    3/2 _.      = 

T.) 

nrQsr   Ms 

PM 7 TTT k Ts ( ?a-?r)2-ZaBlnjt"  ^'Vr-W 
sr ä^r 

VkTrs 

(28) 

compared to the relative thermal nonequilibrium of the electron component, the thermal 

nonequilibnum between the heavy particles is negligible (Ta ~ T0   Ti~ Ta).    By con- 

sideration of the relative order of magnitude of the mean mass velocities of the compon- 

ents,  Equation (28». for th.- change of the ilin-mal nonequilibrium between the electron 

anil drivinti «as component in the axial direction.gives: 

- 8 

2 V dx 

E 
r=o.a,i 

; E 
r=o, a, i 

I             n     "a "ea      •(■ •i - -eici 

"c Qoe 
m0 + m, 

"e^oe 
m0 

1 

:  V^ k Toe 

3/2 
l*oe            ,, rr 

VI 

3'ff 

"r^er        I      .  _ 
m0 t mr   tcr * Ter   ■ 

r>             3/2 

mc       yv Ter 

k (Te- To» 

^ foe 0 (29) 
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As will be verified by the result, the thermal nonequihbrium buiUls up with a relaxation 

k-ngth  IT    wh.ch is large compared to the relaxat^n length     Ij, .    Equation (24) . of the 

buildup of the electron drift velocity.    In the region above the current buildup.  » ft Mj. 
therefore   the fncUonal heat source can be regarded as varying relatively insignificantly. 

Under consideration of these circumstances.  Equation (29) can be integrated to give in 

first approximation; 

|k(Te-T0)x   ■  |k(Te-T0)xso^X/lT 

t [ | MH.       2   nr Qer   ■   «e^l " ^ Sea - ne n, Rcie) •  ^[ " ^ 
L e    r'o.a.i 

(30) 

where the reciprocal characteristic relaxation length of the process. 

'V .   "JIHl   .    ]r      |2.   nrQer   •   ^ 
3 f   v me "^ ,   mr 

(31) 

r50,a, i 

Terms, relatively small of order mc/m   .e and        m   _ 
r O       O      6 

nonequihbrium state follows as the limit x - -   of Equation (30): 

"     m„Tr, -   have been neglected.    The finite 

| k (Tg - T0). 
"tT kTc    •    Y.     nrQ,.r •  me vj.! - (naSea - neni ReiP)«n 
f If  jr me ^- 

' r=o, a. i J 
(32) 

When the reactive terms are omitted.   EquaUm, (32) becomes,  in principle,  identical 

with the relation given by Finkelnburg. 

Equations (30 through 32) lead to the following conclusions: 
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An Brbiirary in..«! temperature nonequUibrlum. < V "V x - o  '  0 WOUld ^ re' 
moved due to thermal energy transfer between the components according to a re- 

laxation process of characteristic length lT .   This thermal relaxation length. lT 

i« of the order E^V    n   Q    /   V ■•   Q     _    ^    larger than the relaxation 

r/.- in, 
cr 

r^ e 
er 

length, li   .  <»f tlte velocity nonequtlibnum. 

After the bu.ldup of the electron drift velocity, which because of Ij. <<   lT . has been 
considered to occur here within a relatively negligible length,  a thermal nonequih- 
br.um   IT    - T ) / 0.  is built up due to the power liberated bv the mtercomponent 

friction forces Snd reactions in the electron component / jL_^_o_    «   iV    Th.s 
\ n   m   T / 

process shows the x-dependence of a relaxation of character is" ic length lT      The 

finite nonequ.libr.um is proportional to the total power liberated in the electron 

component and the "electron heatmg length" 1T 

For further discussion, define a reactive relaxation length. lr, which characterizes the 

reactive change of the electron density and «hich Is positive or negative depend.ng on 

whether the .onization reaction velocity is larger or smaller than the recombination 

reaction velocity, by; 

I 
I 
I 

(in 

na Sea - ne nj Reie 

By means of the relaxation lengths ^ .  lT .  and l'" from Equation. (24).  (31).  and (33). 

Equation (32) can be rewritten in the form 

|k(Tc TQ). 
1   m   ü 2 

=   2   me V-I-P 2-7 2me •j.r 

(34) 
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It is recognized that the reactive energy production in the state of reactive nonequilibrium 

produces an elevation or depression of the Intel-component thermal nonequilihiium. 

according to whether the reactive relaxation 1    is negative or positive.    It is under the 

conditions: 

1                 2 
1                         i  i^e   vle 
^L      f    2   I      :    (Te-T0).    ?0 (35) 

^mevXe2 

ll > z ■2 :   (Tp 

lr •n 
T0),     i 0 (36) 

In Kquations (35 and 36) consider that,  in general,  m    v    2  /,   «I     In reaction equili- 
r e   J. e      n 

bnum,   I    =", of course no reactive influence exists,  as in this special case no reactive 

energy production occurs in the plasma. 

APPLICATION 

The investigated nonequilibrium processes are to be observed in experiment when the 

relaxation length    (1)        of the process is not remarkably larger than the active length 

of the channel (L).    As an example, consider a helium plasma flow seeded with IT» cesium 

at a mean gas temperature T0 = 2000oK and a mean total pressure P0 -   1 atmosphere. 

The particle constants in this case are: 

Qeo = 5 X 10"16 cm2. Oca    4 X lu-16cm2, «^ = 3 X 10-12cm2 

-24 -22 
m    » 6.689 X 10        gr,  m„     2. 172 X 10 " gr     m o a * 

28 
m(.     !). 108 X 10 '0 gr 

1H T 
Based on the oquilihrium densities at the channel entrance,  n0 = 3. 6 X  10    cm" .   nc - 

3  5 X 10    cm '   - n ,  n0 = 3.6 X 10    cm    ,  it follows for the order of magnitude of the 
i      « 

relaxation length in Kquation (:U): 
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Consequentlv, for a mean flow velocity of v,,«, = l(fi cm/sec. the characteristic length for the 

buildup of the thermal nonequihbnum is of the order Lj. ?  0. 8 X lO"2 cm.    More accurate 

values can be obtained If necessary by csumatmg the electron temperature in accordance 

with Equation (34). 

The relaxation length, lr. for the reactive change of the electron density is considerably 

larger than the relaxation length of the thermal nonequilibrium.    For a nonequUibrium 

electron temperature Te = 3000°K (T0 = 2000eK). there results from Equation (33): 

lr   ?     l0'4vllOcm 

:> 
when reactive nonequiUbnum with predominating lonuation is assumed.    Forv.o   = 10' 

cm/sec a relaxation length lr   ■   10 cm is obtained.   Consequently, a nonequiUbnum 
lomzation corresponding to the nonequilibrium electron temperature built up in the channel 

can be observed only above a length of this order of magnitude. 
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V.   SUMMARY KOR THE FIRST YEAR 

During the past vear a closed loop MPD device was designed,  manufactured, and operated. 

As preliminary conclusions of this research work the following statements can be made. 

MATERIAL PROBLEMS 

Materials are available to build a closed loop MPD device using cesium as seed material 

for long-time operation.    This has been shown to be true at least up to 1700'K.    Such a 
generator has to be designed very carefully because of the poor insulation properties of 

alumina, due to high temperature, or due to deposition of impurities or cesium.    However, 

„ has been shown that the utilization of exotic materials can be reduced to a minimum. 

NOMWILIBRIUM lONIZATION 

The overall conductivity obtained has been of the same order of magnitude as the plasma 

conductivity due to thermal ionization (0.23 mho/m for 1400-K and 1 mho/m for 17ü0»K). 
Since the overall conductivity includes losses in the boundary layers which might be quite 

substantial,  there is a good possibility that a higher conductivity exists than would bo 
expected due to thermal ionization.    However,  at the present time no quantitative informa- 

tion is available; this information will be obtained in the near future. 

AUXILIARY IONIZATION 

Encouraging results were obtained at low temperatures with auxiliary ionization by a 

corona discharge at atmospheric pressure     The conductivity obtained was one mho/m. 

A more thorough investigation of this effect is required. 
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